Приложение к основной образовательной программе основного общего образования МКОУ ХМР «СОШ п. Сибирский»

Рабочая программа учебного предмета «Физика», для 9 класса

Срок освоения программы: 1 год

Составитель: учитель

Абдрахманов Д.Р.

І. ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Освоение учебного предмета «Физика» направлено на развитие у обучающихся представлений о строении, свойствах, законах существования и движения материи, на освоение обучающимися общих законов и закономерностей природных явлений, создание формирования интеллектуальных, творческих. коммуникационных, информационных компетенций. Обучающиеся овладеют научными методами решения различных теоретических и практических задач, умениями формулировать гипотезы, конструировать, проводить эксперименты, оценивать и анализировать полученные результаты, сопоставлять их с объективными реалиями жизни. Учебный предмет «Физика» способствует формированию у обучающихся умений безопасно использовать лабораторное оборудование, проводить естественно-научные исследования и эксперименты, анализировать полученные результаты, представлять и научно аргументировать полученные выводы. Изучение предмета «Физика» в части формирования у обучающихся научного мировоззрения, освоения общенаучных методов (наблюдение, измерение, эксперимент, моделирование), освоения практического применения научных знаний физики в жизни основано на межпредметных связях с предметами: «Математика», «Информатика», «Химия», «Биология», «География», «Экология», «Основы безопасности жизнедеятельности», «История», «Литература» и др. Рабочая программа обязательного учебного предмета «Физика» основного общего образования разработана в соответствии с требованиями обновлённого Федерального государственного образовательного стандарта основного общего образования (ФГОС ООО) и с учётом Примерной основной образовательной программы основного общего образования (ПООП ООО).

Программа разработана на основании методических рекомендаций Министерства Просвещения РФ, в соответствии с учебным планом МКОУ ХМР «СОШ п. Сибирский» для уровня основного общего образования с использованием современного оборудования центра естественно-научной и технологической направленности «Точка роста». На базе центра «Точка роста» обеспечивается реализация образовательных программ естественнонаучной и технологической направленностей, разработанных в соответствии с требованиями законодательства в сфере образования и с учётом рекомендаций Федерального оператора учебного предмета «Физика». Использование оборудования центра «Точка роста» при реализации данной рабочей программы позволяет создать условия:

- для расширения содержания школьного физического образования;
- для повышения познавательной активности обучающихся в естественно-научной области;
- для развития личности ребенка в процессе обучения физики, его способностей, формирования и удовлетворения социально значимых интересов и потребностей;
- для работы с одарёнными школьниками, организации их развития в различных областях образовательной, творческой деятельности.

Применяя цифровые лаборатории на уроках физики, учащиеся смогут выполнить множество лабораторных работ и экспериментов по программе Физика.

Учебник: Перышкин А.В. Физика: учебник для 9 класса общеобразовательных учреждений – М.: Дрофа, 2024

Цели изучения учебного предмета «ФИЗИКА»

Целями изучения ФИЗИКИ на уровне основного общего образования являются:

- приобретение интереса и стремления обучающихся к научному изучению природы, развитие их интеллектуальных и творческих способностей;
- развитие представлений о научном методе познания и формирование исследовательского отношения к окружающим явлениям;
- формирование научного мировоззрения как результата изучения основ строения материи и фундаментальных законов физики;
- формирование представлений о роли физики для развития других естественных наук, техники и технологий;
- развитие представлений о возможных сферах будущей профессиональной деятельности, связанной с физикой, подготовка к дальнейшему обучению в этом направлении.

Достижение целей обеспечивается решением следующих ЗАДАЧ:

- приобретение знаний о дискретном строении вещества, о механических, тепловых, электрических, магнитных и квантовых явлениях;
- приобретение умений описывать и объяснять физические явления с использованием полученных знаний;
- освоение методов решения простейших расчётных задач с использованием физических моделей, творческих и практико-ориентированных задач;
- развитие умений наблюдать природные явления и выполнять опыты, лабораторные работы и экспериментальные исследования с использованием измерительных приборов;
- освоение приёмов работы с информацией физического содержания, включая информацию о современных достижениях физики; анализ и критическое оценивание информации;
- знакомство со сферами профессиональной деятельности, связанными с физикой, и современными технологиями, основанными на достижениях физической науки..

Место учебного предмета «Физика» в учебном плане МКОУ XMP «СОШ п. Сибирский»

В соответствии с $\Phi \Gamma O C$ OOO физика является обязательным предметом на уровне основного общего образования. Данная программа предусматривает изучение биологии в объёме 68 часов за один год обучения -3 часа в неделю

ІІ. ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОСВОЕНИЯ УЧЕБНОГО ПРЕДМЕТА

Изучение учебного предмета «Физика» на уровне основного общего образования должно обеспечивать достижение следующих личностных, метапредметных и предметных образовательных результатов

2.1. Личностные результаты:

1. Гражданское и духовно-нравственное воспитание:

- готовность к активному участию в обсуждении общественно-значимых и этических проблем, связанных с практическим применением достижений физики;
- осознание важности морально-этических принципов в деятельности учёного.;

2. Патриотического воспитания

- проявление интереса к истории и современному состоянию российской физической науки;
- ценностное отношение к достижениям российских учёных-физиков

3. Эстетическое воспитание:

восприятие эстетических качеств физической науки: её гармоничного построения, строгости, точности, лаконичности.

4. Ценности научного познания:

- осознание ценности физической науки как мощного инструмента познания мира, основы развития технологий, важнейшей составляющей культуры;
- развитие научной любознательности, интереса к исследовательской деятельности.
 Формирование культуры здоровья и эмоционального благополучия:
- осознание ценности безопасного образа жизни в современном технологическом мире, важности правил безопасного поведения на транспорте, на дорогах, с электрическим и тепловым оборудованием в домашних условиях;
- сформированность навыка рефлексии, признание своего права на ошибку и такого же права у другого человека.

5. Трудовое воспитание:

- активное участие в решении практических задач (в рамках семьи, школы, города, края)
 технологической и социальной направленности, требующих в том числе и физических знаний:
- интерес к практическому изучению профессий, связанных с физикой.

6. Экологическое воспитание:

- ориентация на применение физических знаний для решения задач в области окружающей среды, планирования поступков и оценки их возможных последствий для окружающей среды;
- осознание глобального характера экологических проблем и путей их решения.

7. Адаптация обучающегося к изменяющимся условиям социальной и природной среды:

- потребность во взаимодействии при выполнении исследований и проектов физической направленности, открытость опыту и знаниям других;
- повышение уровня своей компетентности через практическую деятельность;
- потребность в формировании новых знаний, в том числе формулировать идеи, понятия, гипотезы о физических объектах и явлениях;
- осознание дефицитов собственных знаний и компетентностей в области физики;
- планирование своего развития в приобретении новых физических знаний;
- стремление анализировать и выявлять взаимосвязи природы, общества и экономики, в том числе с использованием физических знаний;
- оценка своих действий с учётом влияния на окружающую среду, возможных глобальных последствий.

2.2. Метапредметные результаты:

Универсальные познавательные действия

Базовые логические действия:

- выявлять и характеризовать существенные признаки фиических объектов (явлений);
- устанавливать существенный признак классификации биологических объектов (явлений, процессов), основания для обобщения и сравнения, критерии проводимого анализа;

- выявлять закономерности и противоречия в рассматриваемых фактах, данных и наблюдениях, относящихся к физическим явлениям;
- выявлять причинно-следственные связи при изучении физических явлений и процессов; делать выводы с использованием дедуктивных и индуктивных умозаключений, выдвигать гипотезы о взаимосвязях физических величин;
- самостоятельно выбирать способ решения учебной физической задачи (сравнение нескольких вариантов решения, выбор наиболее подходящего с учётом самостоятельно выделенных критериев)

Базовые исследовательские действия:

- использовать вопросы как исследовательский инструмент познания;
- проводить по самостоятельно составленному плану опыт, несложный физический эксперимент, небольшое исследование физического явления;
- оценивать на применимость и достоверность информацию, полученную в ходе исследования или эксперимента;
- самостоятельно формулировать обобщения и выводы по результатам проведённого наблюдения, опыта, исследования;
- прогнозировать возможное дальнейшее развитие физических процессов, а также выдвигать предположения об их развитии в новых условиях и контекстах..

Работа с информацией:

- применять различные методы, инструменты и запросы при поиске и отборе биологической информации или данных из источников с учётом предложенной учебной физической задачи;
- анализировать, систематизировать и интерпретировать информацию различных видов и форм представления;
- самостоятельно выбирать оптимальную форму представления информации и иллюстрировать решаемые задачи несложными схемами, диаграммами, иной графикой и их комбинациями..

Универсальные коммуникативные действия

Общение:

- воспринимать и формулировать суждения, выражать эмоции в процессе выполнения практических и лабораторных работ;
- выражать себя (свою точку зрения) в устных и письменных текстах;
- распознавать невербальные средства общения, понимать значение социальных знаков, знать и распознавать предпосылки конфликтных ситуаций и смягчать конфликты, вести переговоры;
- понимать намерения других, проявлять уважительное отношение к собеседнику и в корректной форме формулировать свои возражения;
- в ходе диалога и/или дискуссии задавать вопросы по существу обсуждаемой биологической темы и высказывать идеи, нацеленные на решение биологической задачи и поддержание благожелательности общения;
- сопоставлять свои суждения с суждениями других участников диалога, обнаруживать различие и сходство позиций;
- публично представлять результаты выполненного биологического опыта (эксперимента, исследования, проекта);

 самостоятельно выбирать формат выступления с учётом задач презентации и особенностей аудитории и в соответствии с ним составлять устные и письменные тексты с использованием иллюстративных материалов.

Совместная деятельность (сотрудничество):

- понимать и использовать преимущества командной и индивидуальной работы при решении конкретной физической проблемы, обосновывать необходимость применения групповых форм взаимодействия при решении поставленной учебной задачи;
- принимать цель совместной деятельности, коллективно строить действия по её достижению: распределять роли, договариваться, обсуждать процесс и результат совместной работы; уметь обобщать мнения нескольких людей, проявлять готовность руководить, выполнять поручения, подчиняться;
- планировать организацию совместной работы, определять свою роль (с учётом предпочтений и возможностей всех участников взаимодействия), распределять задачи между членами команды, участвовать в групповых формах работы (обсуждения, обмен мнениями, мозговые штурмы и иные);
- выполнять свою часть работы, достигать качественного результата по своему направлению и координировать свои действия с другими членами команды;
- оценивать качество своего вклада в общий продукт по критериям, самостоятельно сформулированным участниками взаимодействия; сравнивать результаты с исходной задачей и вклад каждого члена команды в достижение результатов, разделять сферу ответственности и проявлять готовность к предоставлению отчёта перед группой;
- овладеть системой универсальных коммуникативных действий, которая обеспечивает сформированность социальных навыков и эмоционального интеллекта обучающихся.

Универсальные регулятивные действия

Самоорганизация:

- выявлять проблемы для решения в жизненных и учебных ситуациях, используя физических знаний;
- ориентироваться в различных подходах принятия решений (индивидуальное, принятие решения в группе, принятие решений группой);
- самостоятельно составлять алгоритм решения задачи (или его часть), выбирать способ решения учебной биологической задачи с учётом имеющихся ресурсов и собственных возможностей, аргументировать предлагаемые варианты решений;
- составлять план действий (план реализации намеченного алгоритма решения), корректировать предложенный алгоритм с учётом получения новых биологических знаний об изучаемом биологическом объекте;
- делать выбор и брать ответственность за решение.

Самоконтроль (рефлексия):

- владеть способами самоконтроля, самомотивации и рефлексии;
- давать адекватную оценку ситуации и предлагать план её изменения;

- учитывать контекст и предвидеть трудности, которые могут возникнуть при решении учебной биологической задачи, адаптировать решение к меняющимся обстоятельствам;
- объяснять причины достижения результатов деятельности, давать оценку приобретённому опыту, уметь находить позитивное в произошедшей ситуации;
- вносить коррективы в деятельность на основе новых обстоятельств, изменившихся ситуаций, установленных ошибок, возникших трудностей;
- оценивать соответствие результата цели и условиям.

Эмоциональный интеллект:

- различать, называть и управлять собственными эмоциями и эмоциями других;
- выявлять и анализировать причины эмоций;
- ставить себя на место другого человека, понимать мотивы и намерения другого;
- регулировать способ выражения эмоций.

Принятие себя и других:

- осознанно относиться к другому человеку, его мнению;
- признавать своё право на ошибку и такое же право другого;
- открытость себе и другим;
- осознавать невозможность контролировать всё вокруг;
- овладеть системой универсальных учебных регулятивных действий, которая обеспечивает формирование смысловых установок личности (внутренняя позиция личности), и жизненных навыков личности (управления собой, самодисциплины, устойчивого поведения).

2.3. Предметные результаты:

Предметные результаты на базовом уровне должны отражать сформированность у обучающихся умений:

- использовать понятия: система отсчёта, материальная точка, траектория, относительность механического движения, деформация (упругая, пластическая), трение, центростремительное ускорение, невесомость и перегрузки; центр тяжести; абсолютно твёрдое тело, центр тяжести твёрдого тела, равновесие; механические колебания и волны, звук, инфразвук и ультразвук; электромагнитные волны, шкала электромагнитных волн, свет, близорукость и дальнозоркость, спектры испускания и поглощения; альфа-, бета- и гамма-излучения, изотопы, ядерная энергетика;
- различать явления (равномерное и неравномерное прямолинейное движение, свободное равноускоренное прямолинейное движение, падение равномерное движение по окружности, взаимодействие тел, реактивное движение, колебательное движение (затухающие и вынужденные колебания), звука, резонанс, волновое движение, отражение прямолинейное распространение, отражение и преломление света, полное внутреннее отражение света, разложение белого света в спектр и сложение спектральных цветов, дисперсия света, естественная радиоактивность, возникновение линейчатого спектра излучения) по описанию их характерных свойств и на основе опытов, демонстрирующих данное физическое явление;

- распознавать проявление изученных физических явлений в окружающем мире (в том числе физические явления в природе: приливы и отливы, движение планет Солнечной системы, реактивное движение живых организмов, восприятие звуков животными, землетрясение, сейсмические волны, цунами, эхо, цвета тел, оптические явления в природе, биологическое действие видимого, ультрафиолетового и рентгеновского излучений; естественный радиоактивный фон, космические лучи, радиоактивное излучение природных минералов; действие радиоактивных излучений на организм человека), при этом переводить практическую задачу в учебную, выделять существенные свойства/признаки физических явлений;
- описывать изученные свойства тел и физические явления, используя физические величины (средняя и мгновенная скорость тела при неравномерном движении, ускорение, перемещение, путь, угловая скорость, сила трения, сила упругости, сила тяжести, ускорение свободного падения, вес тела, импульс тела, импульс силы, механическая работа и мощность, потенциальная энергия тела, поднятого над поверхностью земли, потенциальная энергия сжатой пружины, кинетическая энергия, полная механическая энергия, период и частота колебаний, длина волны, громкость звука и высота тона, скорость света, показатель преломления среды); при описании правильно трактовать физический смысл используемых величин, обозначения и единицы физических величин, находить формулы, связывающие данную физическую величину с другими величинами, строить графики изученных зависимостей физических величин;
- характеризовать свойства тел, физические явления и процессы, используя закон сохранения энергии, закон всемирного тяготения, принцип суперпозиции сил, принцип относительности Галилея, законы Ньютона, закон сохранения импульса, законы отражения и преломления света, законы сохранения зарядового и массового чисел при ядерных реакциях; при этом давать словесную формулировку закона и записывать его математическое выражение;
- объяснять физические процессы и свойства тел, в том числе и в контексте ситуаций практико-ориентированного характера: выявлять причинно-следственные связи, строить объяснение из 2—3 логических шагов с опорой на 2—3 изученных свойства физических явлений, физических законов или закономерностей;
- решать расчётные задачи (опирающиеся на систему из 2— 3 уравнений), используя законы и формулы, связывающие физические величины: на основе анализа условия задачи записывать краткое условие, выявлять недостающие или избыточные данные, выбирать законы и формулы, необходимые для решения, проводить расчёты и оценивать реалистичность полученного значения физической величины;
- распознавать проблемы, которые можно решить при помощи физических методов; используя описание исследования, выделять проверяемое предположение, оценивать правильность порядка проведения исследования, делать выводы, интерпретировать результаты наблюдений и опытов;
- проводить опыты по наблюдению физических явлений или физических свойств тел (изучение второго закона Ньютона, закона сохранения энергии; зависимость периода колебаний пружинного маятника от массы груза и жёсткости пружины

- амплитуды малых колебаний; прямолинейное И независимость ОТ распространение света, разложение белого света в спектр; изучение свойств изображения в плоском зеркале и свойств изображения предмета в собирающей линейчатых линзе; наблюдение сплошных И спектров излучения): самостоятельно собирать установку из избыточного набора оборудования; описывать ход опыта и его результаты, формулировать выводы;
- проводить при необходимости серию прямых измерений, определяя среднее значение измеряемой величины (фокусное расстояние собирающей линзы); обосновывать выбор способа измерения/измерительного прибора;
- проводить исследование зависимостей физических величин с использованием прямых измерений (зависимость пути от времени при равноускоренном движении без начальной скорости; периода колебаний математического маятника от длины нити; зависимости угла отражения света от угла падения и угла преломления от угла падения): планировать исследование, самостоятельно собирать установку, фиксировать результаты полученной зависимости физических величин с учётом заданной погрешности измерений в виде таблиц и графиков, делать выводы по результатам исследования;
- проводить косвенные измерения физических величин (средняя скорость и ускорение тела при равноускоренном движении, ускорение свободного падения, жёсткость пружины, коэффициент трения скольжения, механическая работа и мощность, частота и период колебаний математического и пружинного маятников, оптическая сила собирающей линзы, радиоактивный фон): планировать измерения; собирать экспериментальную установку и выполнять измерения, следуя предложенной инструкции; вычислять значение величины и анализировать полученные результаты;
- соблюдать правила техники безопасности при работе с лабораторным оборудованием;
- различать основные признаки изученных физических моделей: материальная точка, абсолютно твёрдое тело, точечный источник света, луч, тонкая линза, планетарная модель атома, нуклонная модель атомного ядра;
- характеризовать принципы действия изученных приборов и технических устройств с опорой на их описания (в том числе: спидометр, датчики положения, расстояния и ускорения, ракета, эхолот, очки, перископ, фотоаппарат, оптические световоды, спектроскоп, дозиметр, камера Вильсона), используя знания о свойствах физических явлений и необходимые физические закономерности;
- использовать схемы и схематичные рисунки изученных технических устройств, измерительных приборов и технологических процессов при решении учебнопрактических задач; оптические схемы для построения изображений в плоском зеркале и собирающей линзе;
- приводить примеры/находить информацию о примерах практического использования физических знаний в повседневной жизни для обеспечения безопасности при обращении с приборами и техническими устройствами, сохранения здоровья и соблюдения норм экологического поведения в окружающей среде;

- осуществлять поиск информации физического содержания в сети Интернет, самостоятельно формулируя поисковый запрос, находить пути определения достоверности полученной информации на основе имеющихся знаний и дополнительных источников;
- использовать при выполнении учебных заданий научно-популярную литературу физического содержания, справочные материалы, ресурсы сети Интернет; владеть приёмами конспектирования текста, преобразования информации из одной знаковой системы в другую;
- создавать собственные письменные и устные сообщения на основе информации из нескольких источников физического содержания, публично представлять результаты проектной или исследовательской деятельности; при этом грамотно использовать изученный понятийный аппарат изучаемого раздела физики и сопровождать выступление презентацией с учётом особенностей аудитории сверстников.

ІІІ. СОДЕРЖАНИЕ КУРСА

РАЗДЕЛ 8. Механические явления

Механическое движение. Материальная точка. Система отсчёта. Относительность механического движения. Равномерное прямолинейное движение. Неравномерное прямолинейное движение. Средняя и мгновенная скорость тела при неравномерном движении.

Ускорение. Равноускоренное прямолинейное движение. Свободное падение. Опыты Галилея. Равномерное движение по окружности. Период и частота обращения. Линейная и угловая скорости. Центростремительное ускорение.

Первый закон Ньютона. Второй закон Ньютона. Третий закон Ньютона. Принцип суперпозиции сил.

Сила упругости. Закон Гука. Сила трения: сила трения скольжения, сила трения покоя, другие виды трения.

Сила тяжести и закон всемирного тяготения. Ускорение свободного падения. Движение планет вокруг Солнца (МС). Первая космическая скорость. Невесомость и перегрузки.

Равновесие материальной точки. Абсолютно твёрдое тело. Равновесие твёрдого тела с закреплённой осью вращения. Момент силы. Центр тяжести.

Импульс тела. Изменение импульса. Импульс силы. Закон сохранения импульса. Реактивное движение (MC).

Механическая работа и мощность. Работа сил тяжести, упругости, трения. Связь энергии и работы. Потенциальная энергия тела, поднятого над поверхностью земли. Потенциальная энергия сжатой пружины. Кинетическая энергия. Теорема о кинетической энергии. Закон сохранения механической энергии.

ДЕМОНСТРАЦИИ

- 1. Наблюдение механического движения тела относительно разных тел отсчёта.
- 2. Сравнение путей и траекторий движения одного и того же тела относительно разных тел отсчёта.
- 3. Измерение скорости и ускорения прямолинейного движения.
- 4. Исследование признаков равноускоренного движения.

- 5. Наблюдение движения тела по окружности.
- 6. Наблюдение механических явлений, происходящих в системе отсчёта «Тележка» при её равномерном и ускоренном движении относительно кабинета физики
- 7. Зависимость ускорения тела от массы тела и действующей на него силы.
- 8. Наблюдение равенства сил при взаимодействии тел.
- 9. Изменение веса тела при ускоренном движении.
- 10. Передача импульса при взаимодействии тел.
- 11. Преобразования энергии при взаимодействии тел.
- 12. Сохранение импульса при неупругом взаимодействии.
- 13. Сохранение импульса при абсолютно упругом взаимодействии.
- 14. Наблюдение реактивного движения.
- 15. Сохранение механической энергии при свободном падении.
- 16. Сохранение механической энергии при движении тела под действием пружины

ЛАБОРАТОРНЫЕ РАБОТЫ И ОПЫТЫ

- 1. Конструирование тракта для разгона и дальнейшего равномерного движения шарика или тележки.
- 2. Определение средней скорости скольжения бруска или движения шарика по наклонной плоскости.
- 3. Определение ускорения тела при равноускоренном движении по наклонной плоскости.
- 4. Исследование зависимости пути от времени при равноускоренном движении без начальной скорости.
- 5. Проверка гипотезы: если при равноускоренном движении без начальной скорости пути относятся как ряд нечётных чисел, то соответствующие промежутки времени одинаковы.
- 6. Исследование зависимости силы трения скольжения от силы нормального давления.
- 7. Определение коэффициента трения скольжения.
- 8. Определение жёсткости пружины.
- 9. Определение работы силы трения при равномерном движении тела по горизонтальной поверхности.
- 10. Определение работы силы упругости при подъёме груза с использованием неподвижного и подвижного блоков.
- 11. Изучение закона сохранения энергии.

РАЗДЕЛ 9. Механические колебания и волны

Колебательное движение. Основные характеристики колебаний: период, частота, амплитуда. Математический и пружинный маятники. Превращение энергии при колебательном движении. Затухающие колебания. Вынужденные колебания. Резонанс. Механические волны. Свойства механических волн. Продольные и поперечные волны. Длина волны и скорость её распространения. Механические волны в твёрдом теле, сейсмические волны (МС). Звук. Громкость звука и высота тона. Отражение звука. Инфразвук и ультразвук.

ДЕМОНСТРАЦИИ

- 1. Наблюдение колебаний тел под действием силы тяжести и силы упругости.
- 2. Наблюдение колебаний груза на нити и на пружине.
- 3. Наблюдение вынужденных колебаний и резонанса.

- 4. Распространение продольных и поперечных волн (на модели).
- 5. Наблюдение зависимости высоты звука от частоты.
- 6. Акустический резонанс.

ЛАБОРАТОРНЫЕ РАБОТЫ И ОПЫТЫ

- 1. Определение частоты и периода колебаний математического маятника.
- 2. Определение частоты и периода колебаний пружинного маятника.
- 3. Исследование зависимости периода колебаний подвешенного к нити груза от длины нити.
- 4. Исследование зависимости периода колебаний пружинного маятника от массы груза.
- 5. Проверка независимости периода колебаний груза, подвешенного к нити, от массы груза.
- 6. Опыты, демонстрирующие зависимость периода колебаний пружинного маятника от массы груза и жёсткости пружины.
- 7. Измерение ускорения свободного падения

РАЗДЕЛ 10. Электромагнитное поле и электромагнитные волны

Электромагнитное поле. Электромагнитные волны. Свойства электромагнитных волн. Шкала электромагнитных волн. Использование электромагнитных волн для сотовой связи. Электромагнитная природа света. Скорость света. Волновые свойства света.

ДЕМОНСТРАЦИИ

- 1. Свойства электромагнитных волн.
- 2. Волновые свойства света.

ЛАБОРАТОРНЫЕ РАБОТЫ И ОПЫТЫ

1. Изучение свойств электромагнитных волн с помощью мобильного телефона

РАЗДЕЛ 11. Световые явления

Лучевая модель света. Источники света. Прямолинейное распространение света. Затмения Солнца и Луны. Отражение света. Плоское зеркало. Закон отражения света.

Преломление света. Закон преломления света. Полное внутреннее отражение света. Использование полного внутреннего отражения в оптических световодах.

Линза. Ход лучей в линзе. Оптическая система фотоаппарата, микроскопа и телескопа (МС). Глаз как оптическая система. Близорукость и дальнозоркость.

Разложение белого света в спектр. Опыты Ньютона. Сложение спектральных цветов. Дисперсия света.

ДЕМОНСТРАЦИИ

- 1. Прямолинейное распространение света.
- 2. Отражение света.
- 3. Получение изображений в плоском, вогнутом и выпуклом зеркалах.
- 4. Преломление света.
- 5. Оптический световод.
- 6. Ход лучей в собирающей линзе.
- 7. Ход лучей в рассеивающей линзе.
- 8. Получение изображений с помощью линз.
- 9. Принцип действия фотоаппарата, микроскопа и телескопа.
- 10. Модель глаза.
- 11. Разложение белого света в спектр.

12. Получение белого света при сложении света разных цветов.

ЛАБОРАТОРНЫЕ РАБОТЫ И ОПЫТЫ

- 1. Исследование зависимости угла отражения светового луча от угла падения.
- 2. Изучение характеристик изображения предмета в плоском зеркале.
- 3. Исследование зависимости угла преломления светового луча от угла падения на границе «воздух—стекло».
- 4. Получение изображений с помощью собирающей линзы.
- 5. Определение фокусного расстояния и оптической силы собирающей линзы.
- 6. Опыты по разложению белого света в спектр.
- 7. Опыты по восприятию цвета предметов при их наблюдении через цветовые фильтры.

РАЗДЕЛ 12. Квантовые явления

Опыты Резерфорда и планетарная модель атома. Модель атома Бора. Испускание и поглощение света атомом. Кванты. Линейчатые спектры.

Радиоактивность. Альфа-, бета- и гамма-излучения. Строение атомного ядра. Нуклонная модель атомного ядра. Изотопы. Радиоактивные превращения. Период полураспада атомных ядер.

Ядерные реакции. Законы сохранения зарядового и массового чисел. Энергия связи атомных ядер. Связь массы и энергии.

Реакции синтеза и деления ядер. Источники энергии Солнца и звёзд (МС).

Ядерная энергетика. Действия радиоактивных излучений на живые организмы (МС).

ДЕМОНСТРАЦИИ

- 1. Спектры излучения и поглощения.
- 2. Спектры различных газов.
- 3. Спектр водорода.
- 4. Наблюдение треков в камере Вильсона.
- 5. Работа счётчика ионизирующих излучений.
- 6. Регистрация излучения природных минералов и продуктов.

ЛАБОРАТОРНЫЕ РАБОТЫ И ОПЫТЫ

- 1. Наблюдение сплошных и линейчатых спектров излучения.
- 2. Исследование треков: измерение энергии частицы по тормозному пути (по фотографиям).
- 3. Измерение радиоактивного фона.

Повторительно-обобщающий модуль

Повторительно-обобщающий модуль предназначен для систематизации и обобщения предметного содержания и опыта деятельности, приобретённого при изучении всего курса физики, а также для подготовки к Основному государственному экзамену по физике для обучающихся, выбравших этот учебный предмет.

При изучении данного модуля реализуются и систематизируются виды деятельности, на основе которых обеспечивается достижение предметных и метапредметных планируемых результатов обучения, формируется естественно-научная грамотность: освоение научных методов исследования явлений природы и техники, овладение умениями объяснять физические явления, применяя полученные знания, решать задачи, в том числе качественные и экспериментальные.

Принципиально деятельностный характер данного раздела реализуется за счёт того, что учащиеся выполняют задания, в которых им предлагается:

- на основе полученных знаний распознавать и научно объяснять физические явления в окружающей природе и повседневной жизни;
- использовать научные методы исследования физических явлений, в том числе для проверки гипотез и получения теоретических выводов;
- объяснять научные основы наиболее важных достижений современных технологий, например, практического использования различных источников энергии на основе закона превращения и сохранения всех известных видов энергии.

Каждая из тем данного раздела включает экспериментальное исследование обобщающего характера. Раздел завершается проведением диагностической и оценочной работы за курс основной школы.

Лабораторные работы проводятся с использованием оборудования Точки Роста

IV. ТЕМАТИЧЕСКОЕ ПЛАНИРОВАНИЕ

3 часа в неделю – 102 часа

No	ТЕМА	Кол-	Дата		Основные		
п/п	I DIVIT	B0	проведения		направления		
11/11		часов	план	факт	воспитательной		
		часов	шлап	факт	деятельности		
Кин	Кинематика прямолинейное равномерное движение (7часов)						
1.	Техника безопасности на уроках физики.				1, 2, 3, 5, 6, 7, 8		
	Материальная точка. Система отсчета						
2.	Перемещение.						
3.	Определение координаты движущегося						
	тела.						
4.	Перемещение при равномерном						
	прямолинейном движении.						
5.	Решение задач						
6.	Решение задач						
7.	Графики зависимости кинематических						
	величин от времени при равномерном						
	движении						
Пря	молинейное равноускоренное движение (14	часов)			T		
8.	Прямолинейное равноускоренное				1, 2, 3, 7, 8		
	движение. Ускорение						
9.	Скорость прямолинейного						
	равноускоренного движения.						
10.	Графики зависимости кинематических						
	величин от времени равноускоренного						
	движения						
11.	Перемещение при прямолинейном						
	равноускоренном движении						
12.	Перемещение при прямолинейном						
	равноускоренном движении						
13.	Перемещение при прямолинейном						
	равноускоренном движении						
14.	Перемещение при прямолинейном						
	равноускоренном движении без						
15	начальной скорости Перемещение при прямолинейном						
15.	равноускоренном движении без						
	начальной скорости						
16.	Лабораторная работа №1 «Исследование						
10.	равноускоренного движения без						
	первоначальной скорости. Оценка						
	погрешности»						
17.	Относительность движения.				1		
1.	Лабораторная работа №2 « Изучение						
	движения тела при действии силы						
	трения»						
18.	Относительность движения.				1		
	Лабораторная работа №2 « Изучение						
	движения тела при действии силы						
	трения»						
19.	Решение задач на прямолинейное						
	равноускоренное движение						
L	1 A 11						

20.	Решение задач на прямолинейное	
	равноускоренное движение	
21.	Контрольная работа по теме	
	«Прямолинейное равномерное и	
	равноускоренное движение»	
	рвы динамики (15 часов)	
22.	Первый закон Ньютона	3, 6, 7, 8
23.	Второй закон Ньютона	
24.	Второй закон Ньютона	
25.	Третий закон Ньютона	
26.	Третий закон Ньютона	
27.	Свободное падение тел. Невесомость.	
28.	Движение тела, брошенного вертикально	
	вверх	
29.	Закон всемирного тяготения. Ускорение	
	свободного падения на Земле и других	
	небесных телах	
30.	Решение задач	
31.	Решение задач	
32.	Прямолинейное и криволинейное	
	движение. Движение по окружности с	
	постоянной по модулю скоростью.	
33.	Лабораторная работа №3 «Измерение	
	ускорения свободного падения»	
34.	Решение задач на движение по окружности	
35.	Решение задач на движение по	
	окружности	
36.	Решение задач по теме «Закон	
	всемирного тяготения. Ускорение	
	свободного падения на Земле и других	
	небесных телах»	
	ульс тела (7 часов)	
37.	Импульс.	3,7,8
38.	Закон сохранения импульса.	
39.	Закон сохранения импульса.	
40.	Реактивное движение. Ракеты.	
41.	Решение задач по теме «Импульс тела.	
	Реактивное движение»	
42.	Решение задач по теме «Импульс тела.	
	Реактивное движение»	
43.	Контрольная работа по теме «Законы	
	динамики»	
	анические колебания (7 часов)	
44.	Колебательное движение. Колебания	3, 5, 6, 7, 8
	груза на пружине. Свободные колебания.	
	Колебательные системы. Маятник	
45.	Величины, характеризующие	
	колебательное движение. Амплитуда,	
4.5	период, частота колебаний	
46.	Решение задач по теме «Механические	
47	колебания».	
47.	Решение задач по теме «Механические	

	колебания».			
48.	Лабораторная работа №4 "Исследование			
	зависимости периода и частоты свободных			
	колебаний нитяного маятника от длины			
	нити"			
49.	Превращение энергии при колебательном			
	движении. Затухающие колебания			
50.	Вынужденные колебания. Резонанс			
Mex	ханические волны и звук (7 часов)			
51.	Распространение колебаний в упругих			3, 6, 7, 8
	средах. Продольные и поперечные			
	волны			
52.	Длина волны. Связь длины волны со			
	скоростью её распространения и			
	периодом (частотой).			
53.	Звуковые волны. Высота тона.			
	Громкость звука.			
54.	Скорость звука. Отражение звука.			
	Звуковой резонанс. Решение задач о			
	колебаниях и волнах.			
55.	Решение задач по теме «Механические			
	колебания и волны».			
56.	Решение задач по теме «Механические			
	колебания и волны».			
57.	Контрольная работа по теме:			
	«Механические колебания и волны».			
	нитное поле. Электромагнитная индукц	ия (16	часов)	
58.	Магнитное поле и его графическое			3,6,7,8
	изображение. Неоднородное и			
	однородное магнитные поля.			
59.	Направление тока и направление линий			
1				
	его магнитного поля. Правило буравчика.			
60.	его магнитного поля. Правило буравчика. Обнаружение магнитного поля по его			
	его магнитного поля. Правило буравчика. Обнаружение магнитного поля по его действию на электрический ток. Правило			
60.	его магнитного поля. Правило буравчика. Обнаружение магнитного поля по его действию на электрический ток. Правило левой руки.			
	его магнитного поля. Правило буравчика. Обнаружение магнитного поля по его действию на электрический ток. Правило левой руки. Индукция магнитного поля. Магнитный			
60.	его магнитного поля. Правило буравчика. Обнаружение магнитного поля по его действию на электрический ток. Правило левой руки. Индукция магнитного поля. Магнитный поток.			
60.	его магнитного поля. Правило буравчика. Обнаружение магнитного поля по его действию на электрический ток. Правило левой руки. Индукция магнитного поля. Магнитный поток. Опыты Фарадея. Электромагнитная			
60.	его магнитного поля. Правило буравчика. Обнаружение магнитного поля по его действию на электрический ток. Правило левой руки. Индукция магнитного поля. Магнитный поток. Опыты Фарадея. Электромагнитная индукция. Лабораторная работа №5			
60.	его магнитного поля. Правило буравчика. Обнаружение магнитного поля по его действию на электрический ток. Правило левой руки. Индукция магнитного поля. Магнитный поток. Опыты Фарадея. Электромагнитная индукция. Лабораторная работа №5 «Изучение явления электромагнитной			
60. 61. 62.	его магнитного поля. Правило буравчика. Обнаружение магнитного поля по его действию на электрический ток. Правило левой руки. Индукция магнитного поля. Магнитный поток. Опыты Фарадея. Электромагнитная индукция. Лабораторная работа №5 «Изучение явления электромагнитной индукции»			
60.	его магнитного поля. Правило буравчика. Обнаружение магнитного поля по его действию на электрический ток. Правило левой руки. Индукция магнитного поля. Магнитный поток. Опыты Фарадея. Электромагнитная индукция. Лабораторная работа №5 «Изучение явления электромагнитной индукции» Направление индукционного тока.			
60. 61. 62.	его магнитного поля. Правило буравчика. Обнаружение магнитного поля по его действию на электрический ток. Правило левой руки. Индукция магнитного поля. Магнитный поток. Опыты Фарадея. Электромагнитная индукция. Лабораторная работа №5 «Изучение явления электромагнитной индукции» Направление индукционного тока. Правило Ленца. Явление самоиндукции.			
60. 61. 62.	его магнитного поля. Правило буравчика. Обнаружение магнитного поля по его действию на электрический ток. Правило левой руки. Индукция магнитного поля. Магнитный поток. Опыты Фарадея. Электромагнитная индукция. Лабораторная работа №5 «Изучение явления электромагнитной индукции» Направление индукционного тока. Правило Ленца. Явление самоиндукции. Переменный ток. Генератор переменного			
60. 61. 62.	его магнитного поля. Правило буравчика. Обнаружение магнитного поля по его действию на электрический ток. Правило левой руки. Индукция магнитного поля. Магнитный поток. Опыты Фарадея. Электромагнитная индукция. Лабораторная работа №5 «Изучение явления электромагнитной индукции» Направление индукционного тока. Правило Ленца. Явление самоиндукции. Переменный ток. Генератор переменного тока. Преобразование энергии в			
60. 61. 62.	его магнитного поля. Правило буравчика. Обнаружение магнитного поля по его действию на электрический ток. Правило левой руки. Индукция магнитного поля. Магнитный поток. Опыты Фарадея. Электромагнитная индукция. Лабораторная работа №5 «Изучение явления электромагнитной индукции» Направление индукционного тока. Правило Ленца. Явление самоиндукции. Переменный ток. Генератор переменного тока. Преобразование энергии в электрогенераторах. Передача			
60. 61. 62.	его магнитного поля. Правило буравчика. Обнаружение магнитного поля по его действию на электрический ток. Правило левой руки. Индукция магнитного поля. Магнитный поток. Опыты Фарадея. Электромагнитная индукция. Лабораторная работа №5 «Изучение явления электромагнитной индукции» Направление индукционного тока. Правило Ленца. Явление самоиндукции. Переменный ток. Генератор переменного тока. Преобразование энергии в электрогенераторах. Передача электрической энергии на расстояние.			
60. 61. 62. 63.	его магнитного поля. Правило буравчика. Обнаружение магнитного поля по его действию на электрический ток. Правило левой руки. Индукция магнитного поля. Магнитный поток. Опыты Фарадея. Электромагнитная индукция. Лабораторная работа №5 «Изучение явления электромагнитной индукции» Направление индукционного тока. Правило Ленца. Явление самоиндукции. Переменный ток. Генератор переменного тока. Преобразование энергии в электрогенераторах. Передача электрической энергии на расстояние. Трансформатор.			
60. 61. 62.	его магнитного поля. Правило буравчика. Обнаружение магнитного поля по его действию на электрический ток. Правило левой руки. Индукция магнитного поля. Магнитный поток. Опыты Фарадея. Электромагнитная индукция. Лабораторная работа №5 «Изучение явления электромагнитной индукции» Направление индукционного тока. Правило Ленца. Явление самоиндукции. Переменный ток. Генератор переменного тока. Преобразование энергии в электрогенераторах. Передача электрической энергии на расстояние. Трансформатор. Решение задач по теме			
60. 61. 62. 63. 64.	его магнитного поля. Правило буравчика. Обнаружение магнитного поля по его действию на электрический ток. Правило левой руки. Индукция магнитного поля. Магнитный поток. Опыты Фарадея. Электромагнитная индукция. Лабораторная работа №5 «Изучение явления электромагнитной индукции» Направление индукционного тока. Правило Ленца. Явление самоиндукции. Переменный ток. Генератор переменного тока. Преобразование энергии в электрогенераторах. Передача электрической энергии на расстояние. Трансформатор. Решение задач по теме «Электромагнитная индукция»			
60. 61. 62. 63.	его магнитного поля. Правило буравчика. Обнаружение магнитного поля по его действию на электрический ток. Правило левой руки. Индукция магнитного поля. Магнитный поток. Опыты Фарадея. Электромагнитная индукция. Лабораторная работа №5 «Изучение явления электромагнитной индукции» Направление индукционного тока. Правило Ленца. Явление самоиндукции. Переменный ток. Генератор переменного тока. Преобразование энергии в электрогенераторах. Передача электрической энергии на расстояние. Трансформатор. Решение задач по теме			

	Электромагнитные волны. Скорость				
	распространения электромагнитных				
	волн.				
68.	Влияние электромагнитных излучений на				
	живые организмы.				
69.	Конденсатор. Колебательный контур.				
	Получение электромагнитных колебаний.				
70.	Принципы радиосвязи и телевидения.				
71.	Принципы радиосвязи и телевидения.				
72.	Решение задач по теме				
	«Электромагнитное поле».				
73.	Контрольная работа «Электромагнитное				
	поле».				
	учения и спектры (4 часа)	Г	Т	1	
74.	Электромагнитная природа света.				3, 6, 7, 8
	Преломление света.				
75.	Показатель преломления.				
76.	Дисперсия света.				
77.	Типы оптических спектров.				
	Лабораторная работа №6 «Наблюдение				
	сплошного и линейчатых спектров				
	испускания»				
	оение атома и атомного ядра (12 часов)	ı	1	1	
78.	Радиоактивность как свидетельство				
	сложного строения атомов. Альфа- и				
70	бета- излучения.				
79.	Опыт Резерфорда. Ядерная модель атома. Радиоактивные превращения атомных				
	ядер. Лабораторная работа №7				
	«Измерение естественного				
	радиационного фона дозиметром»				
80.	Протонно-нейтронная модель ядра.				
81.	Физический смысл зарядового и				
01.	массового чисел. Сохранение зарядового				
	и массового чисел при ядерных реакциях.				
82.	Энергия связи частиц в ядре.				
83.	Энергия связи частиц в ядре.				
84.	Деление ядер урана. Цепная реакция.				
	Лабораторная работа №8 «Изучение				
	деления ядра урана по фотографии				
	треков»				
85.	Ядерный реактор. Ядерная энергетика.				
	Экологические проблемы работы				
	атомных электростанций.				
86.	Методы наблюдения и регистрации				
	частиц в ядерной физике. Лабораторная				
	работа №9 «Изучение треков заряженных				
C=	частиц по готовым фотографиям»		-		
87.	Термоядерная реакция. Источники				
00	энергии Солнца и звёзд.		-		
88.	Дозиметрия. Период полураспада. Закон				
90	радиоактивного распада.				
89.	Контрольная работа по теме «Строение	1		1	

	атома и атомного ядра»				
Пов	Повторение (16 часов)				
90.	Кинематика прямолинейное			3, 7, 8	
	равномерное движение			, ,	
91.	Прямолинейное равноускоренное				
	движение				
92.	Прямолинейное равноускоренное				
	движение				
93.	Основы динамики				
94.	Основы динамики				
95.	Импульс.				
96.	Импульс.				
97.	Механические волны и звук				
98.	Магнитное поле. Электромагнитная				
	индукция				
99.	Излучения и спектры				
100.	Строение атома и атомного ядра				
101.	Итоговое тестирование за курс физики 9				
	класса				
102.	Заключительный обобщающий урок				